讲座人简介:
葛建全,北京师范大学博士生导师。主要研究微分几何,特别是子流形的几何与拓扑。2008年至今已在《Advances Math.》、《J. Reine Angew. Math.》、《Math. Ann.》、《J. Funct. Anal.》等国际著名数学期刊上接受发表了21篇论文(含18篇SCI,3篇综述文章),在中美数学会联合会议、中日几何会议(第6、10、11届)、日本超曲面国际会议等做过20多次国内外学术演讲。 曾于2011年获得中国数学会钟家庆数学奖,2015年获国家自然科学优秀青年基金,2016年获教育部长江学者奖励计划青年学者项目。
讲座简介:
For compact submanifolds in Euclidean and Spherical space forms with Ricci curvature bounded below by a function α(n,k,H,c) of mean curvature, we prove that the submanifold is either isometric to the Einstein Clifford torus, or a topological sphere for the maximal bound α(n,n/2,H,c), or has up to k-th homology groups vanishing. This gives an almost complete (except for the differentiable sphere theorem) characterization of compact submanifolds with pinched Ricci curvature, generalizing celebrated rigidity results obtained by Ejiri, Xu-Tian, Xu-Gu, Xu-Leng-Gu, Vlachos, Dajczer-Vlachos. This is a joint work with Ya Tao and Yi Zhou.